14.1 & 14.3 Intro to Surfaces and Partial Derivatives

Def'n: A function, *f*, of two variables is assigns a number for each input (x,y) $z = f(x, y)$.

 (x, y) = location on the xy-plane. $z = f(x, y)$ = height above that pt.

Our main visualization tool is *level curves* (traces for $z = k$, a constant) Domain of a function restrictions where it works

$$
\frac{1}{\sqrt{B(\alpha h)}} \Rightarrow B(\alpha h \ge 0 \qquad \qquad y = \sqrt{5 - x} \Rightarrow 5 - x = 1
$$
\n
$$
\frac{1}{\sqrt{5 - x}} \Rightarrow 5 - x = 1
$$

$$
ln(+hings) \Rightarrow +hings > 0
$$

 $y = 15 - x \Rightarrow 5 - x \geq c$

Find and sketch domain of ...
\n
$$
z = ln(4-x^2-4y^2)
$$

\n $4-x^2-4y^2 > 0 \leq$ region, not an interval
\n $4-x^2-4y^2 = 0 \leq$ ellipse.
\n $x^2+4y^2 = 4$ drawn on ellipse...
\n y dotted line = doesn't include those points
\n y
\n $1-x^2$
\nShade inside (not outside)
\n y
\n $1-x^2$
\n $1-x^2$

$$
z=\sqrt{q-x^{2}}-125-y^{2}
$$

\n $\sqrt{q-x^{2}} \ge 0$ 36 cm happening
\n $\sqrt{25-y^{2}} \ge 0$

circular parabaloid

Graph several level curves for $\mathcal V$ $z = f(x, y) = 9 - x^2 - y^2$

and make a contour map.

 $2 = 0 \rightarrow 0 = 9 - x^2 - 9^2$ $x^2 + y^2 = 9$ $2z - 3 \rightarrow 3 = 9 - x^2 - y^2$ $x^2 + y^2 = 6$ $7 = 6$ \rightarrow 6 = 9 - x^2-y^2 $x^2+y^2 = 3$ $z = 9 \rightarrow 9 = 9 - x^2 - y^2 x^2 + y^2 = 0$

 2.6853

- X

 \mathfrak{t} \mathfrak{r} \mathfrak{q} \mathfrak{r}

Aside: Tips for identifying graphs in HW:

- 1. Plot a few points…
	- Like $f(0,0)$, $f(0,1)$, $f(1,0)$
- 2.Draw a few level curves…
	- Like $z = 0$, $z = 1$, $z = 2$
- 3. Special features?
	- Places it is undefined
	- Behavior as x and y get bigger
	- \bullet Is it a wave if x (or y) is fixed?

 $2 - 9$ is a high point/a maximum topographic map $2 = 0$

Visuals: <https://www.math3d.org/vWjudPnx>

HW 14.1 / 9:

Match the function to the picture

$$
I = \frac{1}{1+x^2+y^2} \Rightarrow x^2+y^2 = 0
$$

curve w{point
(a) $f(x, y) = \frac{1}{1+x^2+y^2}$
(b) $f(x, y) = \frac{1}{1+x^2+y^2}$
(c) $f(x, y) = \ln(x^2+y^2)$ *and* $f(x, y) = \frac{1}{(x^2+y^2)}$

under, (d) $f(x, y) = \cos(\sqrt{x^2+y^2})$ $\frac{\pi}{4} = \sqrt{x^2+y^2}$
(e) $\frac{1}{(x^2+y^2)} = \frac{\pi}{4} = \sqrt{x^2+y^2}$
(f) $f(x, y) = |xy|$
(g) $f(x, y) = |xy|$
(h) $f(x, y) = \frac{1}{(x^2+y^2)}$

Contour Maps

If we are looking at *z = c traces*, we call them **level curves**. A collection of level curves at equally spaced z values is called a **contour map**.

what does it mean if

ontours are closer together steeper - Contours cross?

pringles chip

both slopes ⁰ top

14.3 Partial Derivatives

Goal: Get slope in two different directions on a surface. We define: ∂Z ∂x $= f_{\mathbf{x}}(x, y) = \lim_{h \to 0}$ $h\rightarrow 0$ $f(x + h, y) - f(x, y)$ h ∂z ∂y $= f_y(x, y) = \lim_{h \to 0}$ $h\rightarrow 0$ $f(x, y + h) - f(x, y)$ ℎ *Quick Example* $f(x, y) = x^2y - 9y - xy^2 + y^3$ = particul
clerivative, Fixed
I. not all variables involved $\frac{d x \cdot d}{dx + h}$ $f(x, y)$ $\qquad \qquad 2x \cdot 2 \quad -c$ $\begin{array}{c} \dot{1} \\ \dot{1} \\ \dot{1} \end{array}$ to $F(X, 2) = X \cdot 2 - 9 \cdot 2 - \chi(2)^2 + (2)^3$ $f(2,y) = (2)^2$ y - qy - zy 2 - y 3 $2xy - 0 - 1y^2 + 0 =$ $|2xy-y^2| \Rightarrow$ slope in x direction $F_y = \left(x^2 - 9 - 2xy + 3y^2\right) \Rightarrow$ slope in y direction

> Visuals: <https://www.math3d.org/gVsjaecy> *Example:*

$$
f(x, y) = x3y + x5exy2 + \ln(y) \t\t\t\tExample:\n
$$
g(x, y) = \cos(x3 + y4)
$$
\n
$$
g(x, y) = \cos(x3 + y4)
$$
$$

$$
F_x = 3x^2y + x^5y^2e^{xy^2} + 5x^4e^{xy^2} + 0
$$

$$
f_y = x^3 + \qquad \qquad + \frac{1}{y}
$$

Notes on Variables and Derivatives

In calculus a variable can be treated as:

- 1. A constant
- 2. An independent variable (input)
- 3. A dependent variable (output),

Old Examples and Review:

a) **One variable function of** *x*:

Find
$$
\frac{dy}{dx}
$$
 for $y - x^2 = 0$.
 $\frac{dy}{dx} = 2x$

b) **Related rates**: At time *t* assume a particle is moving along the path $y = x^2$. Find $\frac{dy}{dt}$. $y(t) = (x/t)$ c) **Implicit**: $x^2 + xy^2 = 1$ — Find $\frac{dy}{dx}$. $\frac{dy}{dt}$ = 2x $\frac{dx}{dt}$ $\frac{d}{dx}(x^{2} + x(y(x))^{2} = 1)$ $2x + x2y + y$

NEW Examples d) Multivariable: $z = x^2 + y^3 - 5xy^4$ Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. $\frac{\partial z}{\partial x} = 2x - 5y^{\frac{1}{2}}$

$$
\frac{\partial z}{\partial y} = 3y^2 - 20xy^3
$$

$$
(2(x))^2 = 2(2(x)) \frac{d^2}{dx}
$$

e) Multi. Implicit:
$$
x^2 + xy^2 - z^2 = 1
$$

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
 $\frac{\partial z}{\partial x} \Rightarrow 2x + y^2 - 2z \frac{dz}{dx} = 0 \Rightarrow \boxed{\frac{d\overline{z}}{dx} = \frac{-2x - y^2}{-2z}}$

More on Graphical Interpretation: Pretend you are skiing on the surface $z = f(x, y) = 15 - x^2 - y^2$.

Exercises:

1. Find $f_x(x, y)$ and $f_y(x, y)$

2. Assume you are standing on the point on the surface corresponding to $(x,y) = (4,7)$.

Compute:

- i) $f(4,7) =$ ii) $f_x(4,7) =$
- iii) $f_{\nu}(4,7) =$

What do these three numbers represent?

The plane $x = 7$ intersecting the surface $z = 15 - x^2 - y^2$.

Second Partial Derivatives

Concavity in *x*-direction:

$$
\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = f_{xx}(x, y)
$$

Concavity in *y*-direction:

$$
\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = f_{yy}(x, y)
$$

Mixed Partials:

$$
\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = f_{xy}(x, y)
$$

$$
\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = f_{yx}(x, y)
$$

Example: Find all second partials for $z = f(x, y) = x⁴ + 3x²y³ + y⁵$